1. Find the indicated quantities for $f(x)=5-x^{2}$.
a. $\mathrm{f}(3)-\mathrm{f}(1)$

3-1
b. $\mathrm{f}(2)-\mathrm{f}(1)$

2-1
c. $\frac{f(x+h)-f(x)}{h}$
d. $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}}$

2. Find the indicated quantities for $f(x)=4 / x$.
a. $\underline{f(4)-f(2)}$

$$
4-2
$$

b. $\mathrm{f}(3)-\mathrm{f}(2)$

$$
3-2
$$

c. $\underline{f(x+h)-f(x)}$
d. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

3. Find the indicated quantities for $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}$.
a. The average rate of change from $x=1$ to $x=4$.
b. The average rate of change from $x=1$ to $x=2$.
c. The instantaneous rate of change at $x=1$.
d. What is the slope of the tangent line at $\mathrm{x}=1$?
e. Write the equation of the tangent line at $x=1$.
4. Find the indicated quantities for $f(x)=x^{2}-4 x+1$.
a. The average rate of change from $x=3$ to $x=5$.
b. The average rate of change from $x=3$ to $x=4$.
c. The instantaneous rate of change at $x=3$.
d. What is the slope of the tangent line at $x=3$?
e. Write the equation of the tangent line at $x=3$.

For Problems 5-7, use the four-step process to find $f^{\prime}(x)$. Then use your answer to find $f^{\prime}(1), f^{\prime}(2)$, and $f^{\prime}(3)$.
5. $f(x)=3 x-7$
6. $f(x)=2-3 x^{2}$
7. $f(x)=x^{2}+6 x+10$

Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slope $=$ Average Rate of Change

Derivative $=$ Instantaneous Rate of Change at a Point $=$ Slope of the Tangent Line at the Point

Point-Slope Equation of a Line: $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
$\left(\mathrm{x}_{1,} \mathrm{y}_{1}\right)$ is a point on the line m is the slope of the line

Four-Step Process for Finding a Derivative:

Step 1. Find $f(x+h)$

Step 2. \quad Find $f(x+h)-f(x)$

Step 3. \quad Find $\underline{f(x+h)-f(x)}$
h

Step 4. Find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

There are many symbols that mean "derivative". Here are the most common ones: f ' $(\mathrm{x}), \mathrm{y}$ ', $\frac{d y}{d x}, \frac{d}{d x} \mathrm{f}(\mathrm{x})$

